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Abstract-The general lateral buckling equation is developed for a uniform, slender cantilever beam with a
load applied at the shear center of the end cross section. This equation is then specialized to include only the
first order effect of the principal bending curvature revealing errors in previous first order analyses. These
errors resulted from a failure to properly distinguish between the geometric and elastic angles of twist. The
correct specialized equation is actually simpler than previously published equations and results in a buckling
load formula noticeably different from formulas based on these earlier equations. This present buckling load
formula is shown to compare favorably with a numerical solution of the general equation.

NOTATION

A bending stiffness in plane of greatest flexural rigidity
b/h ratio of cross section dimensions, b /h < I

B bending stiffness in plane of least flexural rigidity
C torsion stiffness constant

J-1/4 Bessell function of first kind, order -~

I length of beam
N, shear force in plane of least flexural rigidity
N, shear force in plane of greatest flexural rigidity

P tip load applied in plane of greatest flexural rigidity
s arc length of deformed beam shear center axis
T tension
y lateral deflection measured from beam tip
a Reissner parameter (3'(I - B /A)
{3 nondimensional buckling load == P/'/YBC

{30 classical nondimensional buckling load = 4·0126
y Reissner parameter 1- C/A
( slope in plane of greatest flexural rigidity
K curvature in plane of greatest flexural rigidity
A curvature in plane of least flexural rigidity
p Poisson's ratio
a dimensionless arc length
T elastic rate of twist

cI! elastic angle of twist
cP geometric angle of twist

()o () evaluated in the pre-buckled configuration (also, variables expressed in asymptotic expansion form may be
subscripted ( )0, ( h, ( )" etc.).

I. INTRODUCTION

The classical theory for the lateral buckling of deep cantilever beams was first presented by
Michell [1]. In this theory, bending curvature in the plane of greatest flexural rigidity prior to
buckling is completely neglected. Prandtl [2] independently developed this same theory and also
generalized it to include the first order effect of the principal bending curvature deriving an
approximate buckling load formula. Reissner [3], unaware of Prandtl's generalized theory,
developed a separate theory for the first order effect of the principal bending curvature. Reissner
developed a series solution for the buckling load, and Federhofer [4] used Reissner's theory to
generate numerical values of the buckling load. t In addition, these numerical results are
compared in [4] to results obtained from Prandtl's formula[2] and found to be approximately
equal for deep cross sections. However, a closer examination of the analyses of [2,3] indicates
that the two theories are not equivalent to first order. Of historical interest is the fact that
Timoshenko and Gere [5] were not aware of Prandtl's generalized theory, in spite of Federhofer's

tTimoshenko and Gere [51 mention the work of Dinnik [61 in connection with the effect of the principal bending curvature
although Dinnik did not actually treat this particular effect.
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work. The same can be said of Goodier [7], who gave Reissner credit for results that appear in [1]
and [2].

In this paper an improved derivation of the lateral buckling equation is given. First, the
general equation is developed including the complete effect of the principal bending curvature
prior to buckling. This general equation is then specialized to include only the first order effect of
the principal bending curvature. Two alternate forms of the specialized equation are also derived.
Comparison of these derivations with the derivations of Prandtl and Reissner reveals that the
previous analyses [2,3] are in error. The correct version of the specialized equation, actually
simpler than previously published equations, is used to generate a buckling load formula. This
formula is compared with similar formulas derived from the equations of [1-3]. In addition,
numerical results obtained using the present formula are compared with a numerical solution of
the general equation. Finally, these results are compared with those from the formulas of [1,2]
and with a series solution from [3].

2. DERIVATION OF BUCKLING EQUATIONS

2.1 The general 7' equation
For uniform slender beams, the warping rigidity and the tension-torsion coupling may be

neglected [8]. Thus, the Kirchoff equilibrium equations for an initially straight beam loaded only
at the ends as given by Love [9] are applicable for deriving the buckling equations.

dN t--N27'+TA=O
ds

dN2dS- TK + Nt 7'=O

dT
ds -N,A +N2 K=O

dK
AdS-(B - C)A7'= N 2

dA
B

dS
+(A - C)K7' = -Nt

d7'
C--(A -B)KA=O

ds

(2.1)

The deformed beam is shown in Fig. 1. The curvatures are K and A in and out of the plane of the
major axis, respectively. The rate of twist 7' is given by 7' == (dcfJ Ids) where cfJ is the usual elastic
torsional deformation; cfJ is positive for counter-clockwise rotations of the cross section when the
beam is viewed from tip to root. The principal bending stiffnesses are A and B, where A > B ;
and C is the torsional rigidity. Nt and N2 are shear forces and T is the tension. The arc length s is
measured from the tip of the deformed beam. We assume first that the beam is loaded in the plane
of greatest flexural rigidity with the buckling load P and that buckling has not occurred. Thus,
N to = 7'0 = Ao = 0 prior to buckling and we shall then look at small perturbations with respect to
this position. Equations (2.1) for the unbuckled configuration yield

From summing forces on an end beam element (Fig. 2) we have

To = P sin (0
N20 = P cos (0

(2.2)

(2.3)

where (0 is the slope, positive down, of the unbuckled beam at s. Equations (2.2) are satisfied if
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d(o
Ko=--

ds
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(2.4)

The exact solution to eqns (2.4) may be written in terms of elliptic functions. The linearized
perturbation equations for Nt, 'T, and A are

1 dN, .PdS = 'T cos (0- A SID (0

dA
BJS+ (A - C)Ko'T +N, = 0

d'TC--(A -B)KoA=O
ds

Thus, the linear buckling equation (for 'T) may be written by using (2.4) and (2.5)

d
2 (1 d'T) (A - B)(A - C) d ( ) A (A - B) dKo A 1dKo d'T t r - 0

ds 2 Ko ds + BC ds Ko'T + BC ds 'T - B Ko dS ds an ~o - .

(2.5)

(2.6)

The boundary conditions follow from A(0) = Ko(O) = 'T(O) = 0 at the free end, A(I) = 0 at the root,
and the third of eqns (2.5).

Equations (2.4) and (2.6) comprise a general theory for the lateral buckling of uniform, slender
cantilever beams.

2.2 The specialized 'T equation
As an approximation to the general theory we consider letting (02be neglected with respect to

unity. Equations (2.4) become

(2.7)

--- __ 5

p

Fig. J.

~ "__ u j To-+=/~

~o ~1

p

Fig. 2.
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Therefore,

Equation (2.6) then becomes
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d(o Psd'S =-1\= -Ko

(0=2~W-s\
(2.8)

d
2

(1 d1') p
2

( B)( C) d p2 ( B) p2 C 2 2 d1'S- -- +- 1-- 1-- S-(S1')+- 1-- S1'---(1 -s )-=0
ds 2

S ds BC A A ds BC A BC 2A ds'
(2.9)

This equation can be further simplified by consistently applying the ordering assumption (02
«[ 1.

From eqn (2.8), we see that (0 is maximum at the tip implying that

(2.10)

But since P is the buckling load, we know from [5] that p2/4fBC > 16. Therefore, the assumption
(0

2
«[ 1 also implies BCfA 2 «[ 1. Neglecting BCfA 2 with respect to unity in eqn (2.9) results in the

following first integral

where we have used the following identity

d2 (1 d1') d[ 2 d(1 dT)]
Sds 2 Sds == ds s ds S2 ds .

(2.11)

(2.12)

Equation (2.11) is the specialized l' equation. A more restrictive approximation C fA «[ 1, yields
another first integral in <t> where l' = (d<t> Ids)

<t>(1) = ~(O) = O.
(2.13)

This is the classical lateral buckling equation for a deep cantilever beam [1]. Considering,
however, that Band C are often the same order of magnitude, the B IA term is usually neglected
along with the CIA term in the classical theory [2,5]. This is equivalent to neglecting all effects of
principal bending curvature prior to buckling and yields a reasonable approximation for the
buckling load of deep beams.

2.3 The specialized N 1 equation
An equation for N 1 may also be obtained from eqns (2.4) and (2.5). The Nt equation has a

simpler form than the specialized l' eqn (2.11) and provides a basis of comparison with the work
of Reissner [3]. Rewriting eqns (2.5) for (02

«[ 1 leads to

-J;- d::l = l' - (oA

dA
B

ds
+(A-C)Ko1'+N1=0

dT
C--(A -B)KoA=O

ds

(2.14)

(2.15)

(2.16)
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where Ko and (0 are given by eqn (2.8). A first integral of eqn (2.15) may now be obtained by
adding (0 times eqn (2.16) to eqn (2.15). (The motivation for this combination resulted from a
separate derivation of the N 1 equation via the variational approach.)

dA dT
BJS+ (A - C)KoT + C(ods - (A - B)(oKoA +N 1 = O.

Equation (2.17) can be simplified by the use of eqns (2.8) and (2.14).

(2.17)

(2.18)

It can be shown that max l(dA!ds)1 > I(A!I)I for all s. Therefore, to be consistent with the ordering
scheme (02

~ 1, the BA(oKo term must be neglected, yielding a first integral of the equation:

BA + C(oT + sN, = 0 (2.19)

where we have used A(0) = T(O) = O. Now T and A may be eliminated from eqn (2.14) by use
of (2.16) and (2.19). The N 1 equation may then be obtained by using the inequality
max l(d2Ntlds 2)1 > (l/l)!(dNtlds)j, consistently neglecting terms of order (0

2 with respect to
unity, and applying the (0, Ko formulas of equation (2.8)

(2.20)

with the corresponding boundary conditions

Equation (2.20) is the specialized N 1 equation, the most concise form of the lateral buckling
equation for the specialized theory.

2.4 The specialized y equation
To facilitate comparison with Prandtl's derivation[2], we also write the buckling equation

for the lateral deflection y measured from the tip (y(O) = 0). Thus according to [8],
(d2 y!ds 2

) = A+ KOcf>. We now substitute eqn (2.19) into eqn (2.16) for BA. (The motiva­
tion for this substitution resulted from a separate derivation of the buckling equation via the
Newtonian method.)

(2.21)

We observe that according to eqn (2.14) and the assumption that (02
~ 1

Thus,

Cdcf> = p(s dy _ y) = pS2-'!(1).
ds ds ds s

Another equation for cf> and y may be written from eqns (2.19) and (2.23)

(2.22)

(2.23)

(2.24)
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where, from eqn (2.14) and (02~ 1

(2.25)

When we divide eqn (2.24) by s, differentiate with respect to s, and substitute for (dcP Ids) from
eqn (2.23), we obtain a single third order equation for y

(2.26)

with the boundary conditions

y(O) = ~: (I) = ~:~(O) = O.

Equations (2.22) and (2.23) may be substituted into eqn (2.26) to yield an equation in T identical to
eqn (2.11). All three specialized buckling eqns (2.11), (2.20) and (2.26) will yield the same first
order buckling load formula.

3. COMP ARISON WITH PREVIOUS BUCKLING AN AL YSES

3.1 Prandtl's analysis
Prandtl [2] derived a single lateral buckling equation in terms of the lateral deflection y

generalized to include the effect of principal bending curvature. The analysis was based on the
Newtonian method with the assumption that (02

~ 1. Equation (2.26) may be rewritten for
comparison with Prandtl's final equation.

Equation (3.1) is identical to eqn (35) of [2] with the exception that the underlined term has the
opposite sign in [2]. An examination of Prandtl's analysis reveals that the discrepancy results
from the evaluation of Nt in eqn (2.24). In the text of [2], directly following eqn (33), Prandtl's
equilibrium equation is expressed in a form similar to eqn (2.24) with the exception that N 1 is
given by

(Prandtl) (3.2)

which is incorrect. The correct expression for N 1 is given by eqn (2.25), the first integral of
Kirchoff's equation, (2.14). The presence of this error introduces the sign reversal into eqn (3.1)
and precludes the possibility of writing eqn (3.1) in the more compact form, eqn (2.26).

3.2 Reissner's analysis
Reissner [3] derived a single lateral buckling equation in terms of the lateral shear N 1 for the

same generalized problem treated by Prandtl. Although the work of Prandtl is mentioned in [3],
Reissner was not aware that Prandtl had already generalized the lateral buckling problem to
include the principal bending curvature. Reissner's analysis was based on eqns (2.1) and a
linearized perturbation about the deflected shape prior to buckling with the implicit assumption
that (02

~ 1. In order to make a comparison with Reissner's equation, we divide eqn (2.20) by s,
differentiate with respect to s, and multiply by S2. These operations yield a third order N 1

equation similar to Reissner's

d
3
N1 d

2
N1 p

2[3( B C) 2 2 C JdNIs-----+- s 1---- + s(5s -1)- -
ds 3 ds 2 BC A A 2A ds

(3.3)



Lateral buckling of uniform slender cantilever beams 1275

Equation (3.3) is identical to Reissner's eqn (5) with the exception that the two underlined terms
do not appear in [3]. t These underlined terms are of the same order of magnitude as the other
term involving CfA. An examination of our analysis shows that these terms are a result of the
ToA term in the first of Kirchoff's eqns (2.1). A study of Reissner's analysis [3] reveals that he
neglected this term, yielding an incomplete expression for N 1

(Reissner) (3.4)

The complete expression for N 1 from eqn (2.14) is

(Correct) (3.5)

The complete N1 expression introduces the underlined CfA terms in eqn (3.3). This might appear
to be merely a refinement of the analysis of [3] except for two important considerations. First,
these terms are the same order of magnitude as the other CfA term in eqn (3.3). Second, the
absence of these underlined terms prevents integration to the much simpler equation for NI, eqn
(2.20). It is interesting to note that Refs. [2] and [3] each erred in their expression for N 1• Of
further interest is the fact that Reissner's expression for NI, eqn (3.4) is inconsistent with the
previously published result of Prandtl, eqn (3.2).

3.3 Physical interpretation
A physical interpretation of the difference between the present analysis and the analyses of

[2] and [3] can be given in terms of the distinction between the geometric and elastic angles of
twist. From equilibrium considerations, one can show that N 1 = P~ where ~ is the dot product
between unit vectors in the direction of N 1 and in the direction of the loading P as shown in Fig.
3. (To the order of magnitude considered here, sin ~ = ~). The angle ~ is the geometric angle of
twist and is not, in general, equal to the elastic angle of twist cPo The exact relationship between
these two angles is derived from purely geometric considerations in [10] and for to2

~ 1 is given
by

~ = cP +LtoA ds. (3.6)

The integral term in eqn (3.6) accounts for the fact that the N 1 axis may rotate due to the product
of slope to, and lateral rotation Ads.

The distinction between ~ and cP has a bearing on the N 1 equation because N 1 is directly
proportional to ~. Thus eqn (3.6) and the definition of ~ yields

(3.7)

UNDEFORMED
POSITION

DEFORMED
POSITION

+

P

N2

Fig. 3.

tReissner also retained BCIA 2 with respect to unity in the s'(dN,/ds) term as a result of the product (1- BIA)
(1- CIA), although we have neglected this term in order to be consistent with '02~ 1.
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which is equivalent to the correct equilibrium expressions, eqns (2.25) and (3.5). A review of the
work of [2] and [3] shows that their analyses did not yield the correct relationship between ~ and
4>. Although Prandtl [2] was aware that the product of bending deflections affected the geometric
twist, eqn (3.2), he did not include the complete effect. Reissner, on the other hand, totally
neglected the effect of bending deflections in the N 1 equilibrium eqn (3.4) and thus did not
distinguish between the elastic and geometric angles of twist.

4. NUMERICAL RESULTS
4.1 Nondimensional equations

We will now compare the buckling load as calculated from the analysis of this paper, eqns
(2. I I) and (2.20), with the buckling load as calculated from eqn (35) of [2] and eqn (5) of [3]. First,
we nondimensionalize the equations and transform them into a form similar to that of the classical
buckling eqn (2.13). The T equation, eqn (2. I I), may be integrated once to give a buckling equation
in terms of the elastic angle of twist 4>

(4.1)

where (J' == s /l and f3 is the nondimensional buckling load (f32 == p 214/BC). The N 1equation, eqn
(2.20), is already in the classical form and may be written in terms of the geometric angle of twist
(~= NdP)

(4.2)

The y equation, eqn (2.26), transforms easily into eqn (4.1) and is not treated here. Equations (4.1)
and (4.2) are different because they describe different physical quantities, 4> and ~. Nevertheless,
they yield the same nondimensional buckling load, f3. Similarly, eqn (35) of [2] can be expressed as

(4.3)

(Prandtl)

and eqn (5) of [3] becomes

(4.4)

(Reissner)

It should be noted that NdP in eqn (4.4) is neither 4> nor ~ because Reissner did not distinguish
between the two twist angles.

4.2 Buckling load formulas
The numerical values of the buckling loads as calculated from eqns (4.1)-(4.4) can be found by

an asymptotic expansion in the small parameters B /A, C/A. This is a completely consistent
approach since it has been assumed from the beginning that (02

~ 1(and consequently, for Band C
the same order of magnitude, B 2/A 2, c2/A \ BC/A 2 ~ 1). Equations (4.1)-(4.4) may all be placed in
the general form

(4.5)

Expansion of (J and f3 2 in powers of B /A and C /A
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and collection of like powers of CIA and B IA, yields three equations for (Jo, (JI, and (J2
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(4.6)

(4.7)

(4.8)

(4.9)

Equation (4.7) has the solution

(Jo =~J-1/4 (13~2); 130 = 4·0126 (4.10)

which is the classical deep beam buckling solution. Equation (4.8) has the trivial solution
13/ = 130\ (JI = O. Equation (4.9) can be solved by taking (J2(lT) = a (IT)(Jo(lT). Thus

da 2 2 (" 2 (" 2 2
dlT (Jo = 130 Jo (Jof(g, (Jo) dg -132 Jo g (Jo dg.

The boundary condition (Jo(l) = 0 immediately yields

f' (Jof(lT, (Jo) dlT
f.l 2 f.l 2 Jo
1"2 = 1"0 .::..::...,1"1----.

lT2(J02 dlT
o

Therefore, the buckling load formula can be expressed as

(4.11)

(4.12)

(4.13)

Equation (4.13) may now be applied to eqns (4.1)-(4.4) to determine the buckling load
formulas. The results for eqns (4.1) and (4.2) can be shown to be equal by the following identity
obtained using eqn (4.7) and integration by parts

The common buckling load is found to be

(4.14)

13 = 4'0126(1 +-.!L +0.6424 C)
2A A

(Correct) (4.15)

for (02
~ 1. The buckling load for the Prandtl equation, eqn (4.3), is

(Prandtl) (4.16)
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and for the Reissner equation, eqn (4.4),

f3 = 4'0126(1+2~ +0·8197~). (Reissner) (4.17)

Equation (4.16) is in agreement with the formula obtained by Prandtl[2] by series solution of his
buckling equation. Reissner [3], on the other hand, did not develop an explicit buckling load
formula. Instead he obtained an implicit infinite series solution

1- a (3')' -1) + a
2
(3')' -1)(7')' -1) _ a 3(3')' -1)(7')' -1)(11 ')' -1) +... = 0

4.3.2 8.7.6.4.3.2 12. 11 . 10.8.7..6.4.3.2
(Reissner) (4.18)

where a = f3 2(1- B IA) and ')' = 1- CIA. It may be shown that the solution of eqn (4.18) is in
agreement with eqn (4.17) for small B IA, CIA. Although the three buckling load formulas (eqns
4.15-4.17) exhibit first order agreement for the coefficient of B IA, the coefficients of CIA in the
Prandtl and Reissner formulas are in error by 26% and 28%, respectively. Federhofer[4] uses
Reissner's series to generate numerical results, some of which are quoted in Timoshenko and
Gere [5]. Thus, these previously published values of the buckling load do not represent accurately
the first order effect of vertical bending prior to buckling.

Strictly speaking, the correct first order formula, eqn (4.15) is only valid for small values of
BIA, CIA. Nevertheless, it is possible to utilize the "natural coordinates"t suggested by the
structure of eqn (4.2) to improve the accuracy of the buckling load formula for larger values of
BIA, CIA. Consider eqn (2.13) in which CIA is neglected with respect to unity. Although the
asymptotic expansion gives the approximate formula

f3 = 4,0126(1 +BI2A)

the exact solution is given by [1] as

f3 = 4·0126
Vl- BIA'

(Michell) (4.19)

Equation (4.19) shows that the expansion term B 12A in the buckling load formula is the first term
of a Taylor series for the inverse square root. This suggests that an improved version of eqn (4.15)
may be written in the form

4·0126
f3 = VI - BIA-I'2848 C IA

(Correct, modified) (4.20)

which is also the formula obtained by applying the Rayleigh-Ritz method to eqn (4.2) with 80 as
the comparison function. Equation (4.20) has the same first order behavior as eqn (4.15) but is
accurate over a larger range of BIA, CIA as shown below.

4.3 Numerical solution of T equation for rectangular cross section
Equations (2.4) and (2.6) may be solved iteratively by numerical integration for comparison

with the buckling load formulas, eqns (4.15), (4.16), and (4.18)-(4.20). As an illustrative example,
we consider a rectangular cross section so that B IA = b 21h2 where b Ih is the ratio of cross
section dimensions. From [12] CIA is uniquely determined by B IA for fixed Poisson's ratio, v.

C =_2 B [1_192 ~B i l-tanh ( nrr )].
A 1+ v A rr 3 A n~1.3,3,... nS 2VBIA

Results for such a rectangular cross section are shown in Figs. 4 and 5 for v = 0·3.

tFor a further discussion of "natural coordinates" see Van Dyke[ll],

(4.21)



Lateral buckling of uniform slender cantilever beams 1279
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EQUATION (4.18)

P PRANDTL'S APPROXIMATE FORMULA,
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EQUATION (2.6)
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In Fig. 4 the numerical solution of the general eqn (2.6) is compared with the first order
formulas, eqns (4.15) and (4.20), and with the solutions of Prandtl [2] and Reissner [3], eqns (4.16)
and (4.18), respectively. The first order behavior of the solutions is exhibited by the slope of the
curve at B IA = O. Both of the first order formulas of this paper show the correct slope at
B IA = 0 with the modified formula being accurate over a larger range of B IA. The formulas of
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Prandtl and Reissner, on the other hand, do not predict the correct slope, each being in error by
approximately 18%.

In Fig. 5, the numerical solution of the general equation is compared with the results of
Reissner(3) and Michell[l], eqns (4.18) and (4.19), respectively, for larger values of BIA.
Reissner's theory provides the wrong curvature with BIA and thus crosses the correct solution
near B IA = 0·1; this provides a temporary agreement between the two curves. This agreement
vanishes, however, as the correct curve approaches an infinite buckling load at BIA = O'3678
(blh =0'6065). The Reissner theory, on the other hand, yields the physically meaningless result
of a finite buckling load at CIA = O' 5 (B IA = 0,625) but no buckling possible for CIA> O'5. It is
interesting to note that the classical Michell formula predicts an infinite buckling load at B IA = 1
rather than at the much lower (and less intuitive) value predicted by the general equation.

5. CONCLUSIONS

A general lateral buckling equation is derived including the complete effect of bending
curvature in the plane of greatest flexural rigidity prior to buckling, eqn (2.6). This general
equation is then specialized to include only the first order effect of principal bending curvature
({02 ~ 1), eqns (2.11), (2.20) and (2.26). Equation (2.20) is the most compact form of the buckling
equation and is easily compared with the classical theory that neglects principal bending curvature.

Comparison of these equations with those of Prandtl[2] and Reissner(3) reveals that the
previous theories are not equivalent to the present theory. The discrepancies are shown to be the
result of incorrect expressions for the geometric angle of twist ~ in [2,3]. Prandtl did not include
the correct effect of bending on ~, and Reissner did not include the effect at all. Curiously
enough, inclusion of the proper terms actually simplifies the buckling equations.

The specialized equations are used to generate a first order buckling load formula, eqn (4.15),
which is noticeably different from similar formulas derived from the equations of [2,3). The
numerical results of Federhofer[4), some of which are quoted by Timoshenko and Gere[5], were
calculated using the equation of [3] and thus are not accurate. A modified formula is introduced,
eqn (4.20), which extends the validity of the specialized theory to larger values of BfA and CIA.
Both present first order formulas compare favorably with the numerical solution of the general
eqn (2.6) for the case of a rectangular cross section, while results from previously published
theories do not show agreement with the numerical solution, Figs. 4 and 5. This numerical
solution is valid for all BfA,,;;; I and predicts an infinite buckling load at BIA = O'3678.
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